博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
基于 DataLakeAnalytics 的数据湖实践
阅读量:6059 次
发布时间:2019-06-20

本文共 8334 字,大约阅读时间需要 27 分钟。

随着软硬件各方面条件的成熟,数据湖(Data Lake)已经越来越受到各大企业的青睐, 与传统的数仓实践不一样的是,数据湖不需要专门的“入仓”的过程,数据在哪里,我们就从哪里读取数据进行分析。这样的好处在于:一来数据可以保存在很便宜的存储上面(比如阿里云的OSS 上面), 给企业节省预算,而需要分析的时候又可以分析;另一方面,因为省去了入仓的流程,对于中小型企业来说人员投入更少,更容易上手。

今天我们就给大家介绍一下,如何基于阿里云的数据湖分析引擎: DataLake Analytics(后面简称DLA) 对用户保存在 OSS 里面的数据建立数据湖,对数据进行各个维度的分析,分析完成得到业务洞见之后再把这些产生的结果再回流到的 RDS 里面供前台业务决策使用。

开通DLA

在开始之前我们要有一个 DLA 的账号,目前 DLA 正在公测,直接申请试用就好了。试用审批成功之后,你会获得一个用户名和密码, 然后在控制台登录就可以使用:

基于 DataLakeAnalytics 的数据湖实践

或者如果你是极客,更偏爱命令行,你也可以使用普通的 MySQL 客户端就可以连接 DLA 了:

mysql -hservice.cn-shanghai.datalakeanalytics.aliyuncs.com

-P10000
-u<your-user-name>
-p<your-password>
在这篇文章里面,我会使用 MySQL 命令行给大家演示 DLA 的功能。

另外你还需要在您的OSS上准备一些测试数据, 我这里准备的是著名的 TPCH 测试数据集:

基于 DataLakeAnalytics 的数据湖实践

用DLA分析OSS上的数据

DLA 是一个以 SQL 作为查询语言的数据湖引擎,为了能够让 DLA 能够对 OSS 上的数据进行查询,我们需要以某种方式告诉 DLA 我们 OSS 数据的结构。为了让用户使用更方便,DLA 使用了传统的 数据库, 表 的概念来维护这些数据的元信息,也就说,OSS的文件结构的数据映射到 DLA 变成了一个数据库和一堆表。

以 TPCH 数据集来举个例子,我们知道 TPCH 数据集里面包含了如下几块信息: 用户(customer), 订单(orders), 订单的详情(lineitem) 等等,这些数据整体属于一块业务,我们建立一个数据库来对应:

CREATE SCHEMA oss_tpch with DBPROPERTIES(

CATALOG = 'oss',
LOCATION = 'oss://public-datasets-cn-hangzhou/tpch/1x/'
);
这每块数据对应到OSS上一个目录的多个文件,拿 订单 来说,它对应的是 orders_text 目录下面的 1 个文件(这个例子里面只有一个文件,实际使用中,这里可以有多个文件):

基于 DataLakeAnalytics 的数据湖实践

我们把这个 orders_text 目录映射到我们的数据库 oss_tpch 下面的一张表:

use oss_tpch;

CREATE EXTERNAL TABLE IF NOT EXISTS orders (

O_ORDERKEY INT,
O_CUSTKEY INT,
O_ORDERSTATUS STRING,
O_TOTALPRICE DOUBLE,
O_ORDERDATE DATE,
O_ORDERPRIORITY STRING,
O_CLERK STRING,
O_SHIPPRIORITY INT,
O_COMMENT STRING
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'
STORED AS TEXTFILE
LOCATION 'oss://public-datasets-cn-hangzhou/tpch/1x/orders_text/';
这样我们就可以通过 DLA 对OSS上的进行数据分析了, 比如我们先来查个前十条看看:

mysql> select * from orders limit 10;

+------------+-----------+---------------+--------------+-------------+-----------------+-----------------+----------------+---------------------------------------------------------------------------+
| o_orderkey | o_custkey | o_orderstatus | o_totalprice | o_orderdate | o_orderpriority | o_clerk | o_shippriority | o_comment |
+------------+-----------+---------------+--------------+-------------+-----------------+-----------------+----------------+---------------------------------------------------------------------------+
| 1 | 3689999 | O | 224560.83 | 1996-01-02 | 5-LOW | Clerk#000095055 | 0 | nstructions sleep furiously among |
| 2 | 7800163 | O | 75388.65 | 1996-12-01 | 1-URGENT | Clerk#000087916 | 0 | foxes. pending accounts at the pending, silent asymptot |
| 3 | 12331391 | F | 255287.36 | 1993-10-14 | 5-LOW | Clerk#000095426 | 0 | sly final accounts boost. carefully regular ideas cajole carefully. depos |
| 4 | 13677602 | O | 43119.84 | 1995-10-11 | 5-LOW | Clerk#000012340 | 0 | sits. slyly regular warthogs cajole. regular, regular theodolites acro |
| 5 | 4448479 | F | 125809.76 | 1994-07-30 | 5-LOW | Clerk#000092480 | 0 | quickly. bold deposits sleep slyly. packages use slyly |
| 6 | 5562202 | F | 56408.2 | 1992-02-21 | 4-NOT SPECIFIED | Clerk#000005798 | 0 | ggle. special, final requests are against the furiously specia |
| 7 | 3913430 | O | 240358.24 | 1996-01-10 | 2-HIGH | Clerk#000046961 | 0 | ly special requests |
| 32 | 13005694 | O | 136666.23 | 1995-07-16 | 2-HIGH | Clerk#000061561 | 0 | ise blithely bold, regular requests. quickly unusual dep |
| 33 | 6695788 | F | 183460.23 | 1993-10-27 | 3-MEDIUM | Clerk#000040860 | 0 | uriously. furiously final request |
| 34 | 6100004 | O | 52842.63 | 1998-07-21 | 3-MEDIUM | Clerk#000022278 | 0 | ly final packages. fluffily final deposits wake blithely ideas. spe |
+------------+-----------+---------------+--------------+-------------+-----------------+-----------------+----------------+---------------------------------------------------------------------------+
10 rows in set (0.21 sec)
我们再来看看用户 36901 的前十条订单:

mysql> select * from orders where o_custkey= '36901' limit 10;

+------------+-----------+---------------+--------------+-------------+-----------------+-----------------+----------------+------------------------------------------------------------------+
| o_orderkey | o_custkey | o_orderstatus | o_totalprice | o_orderdate | o_orderpriority | o_clerk | o_shippriority | o_comment |
+------------+-----------+---------------+--------------+-------------+-----------------+-----------------+----------------+------------------------------------------------------------------+
| 1243264 | 36901 | F | 103833.45 | 1992-03-23 | 2-HIGH | Clerk#000000922 | 0 | nts haggle. even, even theodolites are. blithely |
| 1274530 | 36901 | O | 181977.58 | 1997-04-29 | 2-HIGH | Clerk#000000232 | 0 | bold foxes along the carefully expres |
| 1599527 | 36901 | F | 322352.11 | 1993-10-16 | 2-HIGH | Clerk#000000674 | 0 | the slyly even dependencies. |
| 1837477 | 36901 | F | 101653.62 | 1993-05-27 | 5-LOW | Clerk#000000891 | 0 | lyly special requests. express foxes sleep fu |
| 1994082 | 36901 | O | 77952.78 | 1995-07-05 | 3-MEDIUM | Clerk#000000525 | 0 | luffily ironic courts. bold, e |
| 2224802 | 36901 | F | 243852.76 | 1993-01-14 | 1-URGENT | Clerk#000000827 | 0 | sly final requests. pending, regular ideas among the furiously u |
| 4957636 | 36901 | F | 5741.32 | 1992-05-20 | 5-LOW | Clerk#000000230 | 0 | ackages. fluffily even packages solve carefully dolphins. unusua |
| 5078467 | 36901 | F | 119823.03 | 1994-04-29 | 4-NOT SPECIFIED | Clerk#000000402 | 0 | regular asymptotes cajo |
| 5173859 | 36901 | F | 103624.02 | 1994-05-28 | 3-MEDIUM | Clerk#000000335 | 0 | regular dependencies poach quickly. unusu |
| 5525574 | 36901 | O | 136098.0 | 1998-02-16 | 4-NOT SPECIFIED | Clerk#000000425 | 0 | cial pinto beans wake. slyly even warthogs use. bo |
+------------+-----------+---------------+--------------+-------------+-----------------+-----------------+----------------+------------------------------------------------------------------+
10 rows in set (1.07 sec)
再来查一查订单量最多的前是个人:

mysql> select o_custkey, count(*) as cnt from orders group by o_custkey order by cnt desc limit 10;

+-----------+------+
| o_custkey | cnt |
+-----------+------+
| 3451 | 41 |
| 102022 | 41 |
| 102004 | 41 |
| 79300 | 40 |
| 117082 | 40 |
| 122623 | 40 |
| 69682 | 39 |
| 143500 | 39 |
| 142450 | 38 |
| 53302 | 38 |
+-----------+------+
10 rows in set (2.69 sec)
恩,这些人就是我们要重点服务好的客户啊,我们要把这些用户的ID回写到前台的 RDS 数据库里面让我们的营销同学做一些针对性的营销活动,没问题,DLA支持把分析好的数据回流到RDS

数据回流 RDS

映射 MySQL 数据库信息进 DLA
要把分析好的数据回流到RDS我们首先一种机制来告诉 DLA 数据回流的目的地,得益于DLA统一的设计,我们就像映射 OSS 的数据一样,我们映射一个 MySQL 数据库进来就好了,比如我们要把数据写到如下的数据库里面:

mysql -habcde.mysql.rds.aliyuncs.com -P3306 -uhello -pworld -Dmarketing

那么我们在 DLA 里面建一个映射的库:

CREATE SCHEMA mysql_marketing WITH DBPROPERTIES

(
CATALOG = 'mysql',
LOCATION = 'jdbc:mysql://abcde.mysql.rds.aliyuncs.com:3306/marketing',
USER='hello',
PASSWORD='world',
INSTANCE_ID = '<your-rds-instance-id>',
VPC_ID = '<your-vpc-id-where-your-rds-lives>'
);
这里需要解释一下的是 VPC_ID 和 INSTANCE_ID, 我们知道为了安全的原因在阿里云上购买的 RDS 我们一般都会把它放在一个单独的VPC里面,以保证只有我们自己可以访问,这里为了让 DLA 能够访问到我们的 MySQL 数据库以进行数据回流,我们需要告诉 DLA 这个 RDS的相关信息。

其中 INSTANCE_ID 和 VPC_ID 在 RDS的详情页面都可以找到, 比如 VPC_ID :

基于 DataLakeAnalytics 的数据湖实践

INSTANCE_ID :

基于 DataLakeAnalytics 的数据湖实践

由于 RDS 的安全组会对访问的来源IP进行控制,我们需要把DLA相关的地址段 100.104.0.0/16 IP地址段加入到你的RDS的白名单列表,如下图:

基于 DataLakeAnalytics 的数据湖实践

到这里为止,准备工作就完成了,我们的 mysql 数据库建好了。

映射 MySQL 结果表进 DLA

我们要保存的结果很简单,就是下单量前 10 的用户, 这个表在 MySQL 数据库里面的建表语句如下:

create table top10_user (

custkey int,
order_cnt bigint
);
而为了把这个表映射进 DLA 我们建一个对应的表,建表语句几乎一样:

use mysql_marketing;

create external table top10_user (
custkey int,
order_cnt bigint
);
ETL
下面我们就可以把查出来的数据进行回流了:

mysql> insert into mysql_marketing.top10_user

-> select o_custkey, count(*) as cnt from oss_tpch.orders
-> group by o_custkey order by cnt desc limit 10;
+------+
| rows |
+------+
| 10 |
+------+
1 row in set (4.71 sec)

mysql> select * from mysql_marketing.top10_user;

+---------+-----------+
| custkey | order_cnt |
+---------+-----------+
| 143500 | 39 |
| 102004 | 41 |
| 53302 | 38 |
| 3451 | 41 |
| 122623 | 40 |
| 129637 | 38 |
| 102022 | 41 |
| 117082 | 40 |
| 69682 | 39 |
| 79300 | 40 |
+---------+-----------+
10 rows in set (0.14 sec)
总结
在这篇文章里面,我带大家一起体验了一下如何用 DLA 建立基于 OSS 的数据湖,对数据库里面的数据进行各个维度的分析,分析完成之后把分析得到的关键数据再回写到我们的RDS里面去。例子里面很多地方写的比较简单,如果想进一步了解更多相关详细信息可以参考以下资料:

Data Lake Analytics + OSS数据文件格式处理大全:

Data Lake Analytics中OSS LOCATION的使用说明:
如何使用Data Lake Analytics创建分区表:
基于Data Lake Analytics来分析OTS上的数据:
使用Data Lake Analytics从OSS清洗数据到AnalyticDB:
使用Data Lake Analytics读/写RDS数据:

转载于:https://blog.51cto.com/14031893/2365424

你可能感兴趣的文章
Python基础班每日整理(一)
查看>>
json 对象和 json 字符串的区别:
查看>>
某软件公司分支公司到总公司的秘密通道
查看>>
负载均衡群集之—LVS-NAT
查看>>
软考考前注意事项
查看>>
洞悉物联网发展1000问之智能汽车会成为下一代移动智能终端吗?
查看>>
实现vlan划分、创建vlan trunk和端口聚合
查看>>
Multi-Model多模数据库引擎设计与实现
查看>>
oracle 11g安装过程中问题:找不到WFMLRSVCApp.ear
查看>>
电子印章助推《上海市公共数据和一网通办管理办法》施行
查看>>
嵌入式学习路线-嵌入式系统开发流程中常见的问题
查看>>
几款数据恢复工具的使用
查看>>
欧派家居牵手用友云平台 打造标准化数据资产管理平台
查看>>
人家弃医从文,弃笔从戎,我要弃运从码
查看>>
VMdomainXml
查看>>
部署SaltStack及批量安装httpd服务
查看>>
最简单ip地址及子网掩码换算,子网获分教程实例。
查看>>
初识易GTD
查看>>
Oracle教程之管理索引(五)--Oracle索引的维护
查看>>
Office 365系列:配置Outlook IMAP方式连接ExchangeOnline
查看>>